Joint 2D-3D-Semantic Data for Indoor Scene Understanding
نویسندگان
چکیده
We present a dataset of large-scale indoor spaces that provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. The dataset covers over 6,000 m and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360◦ equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces.
منابع مشابه
A Robust 3D-2D Interactive Tool for Scene Segmentation and Annotation
Recent advances of 3D acquisition devices have enabled large-scale acquisition of 3D scene data. Such data, if completely and well annotated, can serve as useful ingredients for a wide spectrum of computer vision and graphics works such as data-driven modeling and scene understanding, object detection and recognition. However, annotating a vast amount of 3D scene data remains challenging due to...
متن کاملDeveloping a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کامل3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation
We present 3DMV, a novel method for 3D semantic scene segmentation of RGB-D scans in indoor environments using a joint 3Dmulti-view prediction network. In contrast to existing methods that either use geometry or RGB data as input for this task, we combine both data modalities in a joint, end-to-end network architecture. Rather than simply projecting color data into a volumetric grid and operati...
متن کاملDA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks
3D scene understanding is important for robots to interact with the 3D world in a meaningful way. Most previous works on 3D scene understanding focus on recognizing geometrical or semantic properties of a scene independently. In this work, we introduce Data Associated Recurrent Neural Networks (DA-RNNs), a novel framework for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recur...
متن کاملAutomatic Semantic Modeling of Indoor Scenes rom Low-quality RGB-D Data using Contextual Information
We present a novel solution to automatic semantic modeling of indoor scenes from a sparse set of low-quality RGB-D images. Such data presents challenges due to noise, low resolution, occlusion and missing depth information. We exploit the knowledge in a scene database containing 100s of indoor scenes with over 10,000 manually segmented and labeled mesh models of objects. In seconds, we output a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1702.01105 شماره
صفحات -
تاریخ انتشار 2017